| Curriculum C | Content Map | р | Subject: Year 13 Maths | | | | | | | | | | | |--------------------------------|-----------------------------|-------------------------------|---|--|--|---|--|---|---|--|--|----------------|------| | Mon | nth | | September | Term 1
October | November | December | January | February | erm 2
March | April | May | Term 3
June | July | | | | | 3 Sequences and Series | 5 Radians | 7 Trigonometry and Modelling | 9 Differentiation | 11 Integration | 1 Regression, correlation and hypothesis
testing | 4 Moments | 7 Applications of Forces | Revision | | | | | J | | 4 Binomial Expansion | 6 Trigonometric Functions | 8 Parametric Equations | 10 Numerical Methods | 12 Vectors | | 5 Forces and Friction | 8 Further Kinematics | | | | | | Nork | | PURE MATHEMATICS | PURE MATHEMATICS | PURE MATHEMATICS | | PURE MATHEMATICS | 2 Conditional Probability | 6 Projectiles | STATISTICS | | | | | | s of | | | | | PURE MATHEMATICS | | 3 Normal Distribution | STATISTICS | | | | | | | Units | | | | | | | | SIAISIKS | | | | | | | | | | | | | | STATISTICS | | | | | | | | | | | 4.00 1 1 1 | | | 4.5.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | 4 8000000000000000000000000000000000000 | | A Branco de Control | | | | | | | "Understand and use the laws of indices
for all rational exponents" | "Solve simultaneous equations in two
variables by elimination and by substitution, | "Understand and use the equation of a
straight line; gradient conditions for two | "Understand and use the binomial expansion
for positive integer n; the notations n! and | 1 & 2 "Understand and use the definitions of sine, cosine and tangent for all arguments; the sine and | "Understand and use the derivative of f(x) as
the gradient of the tangent to the graph of y | Calculus" | "Understand and use the terms 'population' and 'sample' | "Interpret diagrams for single-variable data,
including understanding that area in a histogram | | | | | | | "Use and manipulate surds, including
rationalising the denominator" | including one linear and one quadratic equation" | straight lines to be parallel or perpendicular" "Be able to use straight line models in a | nCr; link to binomial probabilities" | cosine rules; the area of a triangle in the form
1/2absinC" | | "Integrate xn (excluding n = -1), and related sums,
differences and constant multiples" | "Use samples to make informal inferences
about the population" | represents frequency" "Connect to probability distributions" | | | | | | | "Manipulate polynomials algebraically, | | variety of contexts" | | "Understand and use the sine, cosine and tangent
functions; their graphs, symmetries and periodicity" | of change; sketching the gradient function for | "Evaluate definite integrals; use a definite integral to
find the area under a curve" | "Understand and use sampling techniques, | "Recognise and interpret possible outliers in data
sets and statistical diagrams" | | | | | | | including expanding brackets and collecting
like terms, factorisation and simple algebraic | single variable and interpret such inequalities
graphically, including inequalities with | 2. "Understand and use the coordinate | | "Understand and use tan = sin/cos" "Understand and use sin2 + cos2 = 1" | a given curve; second derivatives;
differentiation from first principles for small | "Know and use the function x a and its graph, | including simple random sampling and
opportunity sampling" | "Select or critique data presentation techniques in
the context of a statistical problem" | | | | | | | division; use of the factor theorem" | brackets and fractions" "Represent linear and quadratic inequalities | geometry of the circle including using the
equation of a circle; completing the square to | | *Solve simple trigonometric equations in a given | positive integer powers of | where a is positive" | "Select or critique sampling techniques in the
context of solving a statistical problem, | "Be able to clean data, including dealing with missing | | | | | | | 2. "Work with quadratic functions and their | graphically" | find the centre and radius of a circle; use of | | interval, including quadratic equations in sin, cos
and tan and equations involving multiples of the | "Understand and use the second derivative | "Know and use the function ex and its graph" "Know that the gradient of ekx is equal to keke and | including understanding that different | data, errors and outliers* | | | | | ¥ | | graphs; the discriminant of a quadratic
function, including the conditions for real and | 2. "Understand and use graphs of functions; | the following properties: the angle in a semicircle is a right angle | | unknown angle" | as the rate of change of gradient" | hence understand why the exponential model is
suitable in many applications" | samples can lead to different conclusions
about the population" | "Interpret scatter diagrams and regression lines
for bivariate data, including recognition of scatter | | | | | onte | | repeated roots; completing the square;
solution of quadratic equations including | sketch curves defined by simple equations
including polynomials, interpret algebraic | the perpendicular from the centre to a
chord bisects the chord | | "Use vectors in two dimensions" "Calculate the magnitude and direction of a vector | "Differentiate xn, for rational values of n, and
related constant multiples, sums and | "Know and use the definition of loga x as the inverse
of ax , where a is positive and x ≥ 0" | 2. "Interpret measures of central tendency | diagrams which include distinct sections of the
population (calculations involving regression lines | | | | |) e | | solving quadratic equations in a function of
the unknown" | solution of equations graphically; use | the radius of a circle at a given point on its
circumference is perpendicular to the | | and convert between component form and
magnitude/direction form" | differences" | "Know and use the functionIn x and its graph" "Know and use In x as the inverse function of ex" | and variation, extending to standard | are excluded)" "Understand informal interpretation of correlation" | | | | | & A-Le | | the diknown | intersection points of graphs to solve
equations" | tangent to the circle at that point | | "Add vectors diagrammatically and perform the
algebraic operations of vector addition and | "Apply differentiation to find gradients, | "Understand and use the laws of logarithms" "Solve equations of the form ax=b" | "Be able to calculate standard deviation, | "Understand that correlation does not imply | | | | | AS & | | | "Understand the effect of simple
transformations on the graph of y = | 3. "Understand and use the structure of | | multiplication by scalars, and understand their
geometrical interpretations" | tangents and normals, maxima and minima
and stationary points" | "Use logarithmic graphs to estimate parameters in | including from summary statistics" | "Understand and use mutually exclusive and | | | | | , | | | f(x)including sketching associated graphs" | mathematical proof, proceeding from given
assumptions through a series of logical steps | | "Understand and use position vectors; calculate the | "Identify where functions are increasing or | relationships, given data for x and y" "Understand and use exponential growth and | | independent events when calculating probabilities" | | | | | | | | | to a conclusion; use methods of proof, | | distance between two points represented by
position vectors" | decreasing" | decay; use in modelling (examples may include the
use of e in continuous compound interest, | | "Link to discrete and continuous distributions" | | | | | | | | | including proof by deduction, proof by
exhaustion" | | "Use vectors to solve problems in pure mathematic
and in context, including forces" | s | radioactive decay, drug concentration decay,
exponential growth as a model for population | | "Understand and use simple, discrete probability
distributions (calculation of mean and variance of | | | | | | | | | "Disproof by counter example" | | | | growth); consideration of limitations and
refinements of exponential models* | | discrete random variables is excluded), including the
binomial distribution, as a model: calculate | | | | | | | | | | | | | | | probabilities using the binomial distribution" | Index Laws Expanding Brackets | Simultaneous Equations, including
quadratics and on a graph | Equations of straight lines Parallel and Perpendicular lines | Pascal's Triangle
Factorial notation | 1. Cosine Rule
Sine Rule | Gradients of curves
Finding the derivative | Integrating xn Indefinite integrals | Populations and samples Sampling, including non-random | 1. Outliers
Box Plots | | | | | | | Factorsing Negative and Fractional Indices | Inequalities, including quadratic and on a | Midpoints and perpendicular bisectors | Binomial expansion Solving binomial problems | Area of Triangle (sine rule) | Differentiating xn | Finding functions Definite integrals | Types of data | Cumulative Frequency Histograms | | | | Ĕ | | | Negative and Fractional Indices
Surds, including rationalising denominator | graph
Regions of inequalities | Equation of a circle | Solving binomial problems
Binomial estimation | Graphs of sine, cosine and tangent, including
transformation of graphs | Differentiating quadratics Differentiating functions with two or more | Areas under curves and the x-axis | 2. Measures of central tendency and spread | - | | | | .0 | 98 | | Solving quadratics, including completing | 2. Cubic Graphs | Tangents and Chords
Circles and triangles | | 2. Angles in quadrants | terms Gradients, tangents and normal | Areas between curves and lines | Variance and standard deviation
Coding | 2. Correlation
Linear Regression | | | | ansmissi | Med | | the square Functions | Quartic Graphs
Reciprocal Graphs | | | Trigonometric identities | Increasing and decreasing functions | 2. Exponential functions | - | | | | | :: | Knov | The What! | Quadratic graphs | Translating Graphs | Algebraic fractions Dividing polynomials | | Trigonometric equations | Second order derivatives
Stationary points | y = ex
Logarithms, including laws of logarithms | | Calculating probabilities Venn diagrams | | | | Ι Ε | tive | me what! | The discriminant
Modelling with quadratics | Sketching Graphs
Transforming Functions | Factor Theorem
Proof | | Vectors, including representing vectors Magnitude and direction | Sketching gradient functions | Solving equations using logarithms
Natural logarithms | | Mutually exclusive and independent events
Tree diagrams | | | | 15 | bstar | | | | | | Position vectors | | Logarithms and non-linear data | | Probability distributions | | | | ıπ | Sul | | | | | | | | | | Binomial distributions | | | | 70 | | | | | | | | | | | Cumulative probabilities | | | | - | | | | | | | | | | | | | | | <u></u> | L | <u>L_</u> | | | | | <u> </u> | | | | <u> </u> | | | | Cultural | | | Students will be encouraged to sketch graphs which is a key skill for them to develop. | These topics are also very much graph based | | One of the skills key to this topic is estimation. Students will need to understand | | Students are back to graphs and sketching | | | Graphs are still important in these topics and
students will need to apply the skills they | | | | | _ | | Students will also complete practice | sketch and manipulate and amend graphs | they will continue to develop their skills in | how binomial expansion can be used as the | encouraged to develop their skills of | differentiation. | about modelling real world situations using
logarithmics and exponentials. | data in order to help with understanding this | have already accumulated. | | | | | edge | | questions and past exam questions.
Students will also be encouraged to start | Students will complete practice questions
and also past exam questions. | this area. Students will also focus on the skill
of proof and how to best present proofs in | basis of estimation. Students will complete practice questions | sketching and labelling geometric shapes,
angles and graphs. | Students will learn the skills needed in order
to find and sketch graphs of differentials will | | content. Students will also further develop
their graphing skills - this time with a focus on | | | | | | No. | | developing their own questions and also
mark schemes. | Students will also be encouraged to create
and develop their own questions on these | order to convey clarity
Students will complete practice questions | and also past exam questions.
Students will also be encouraged to create | Students will complete practice questions
and also past exam questions. | need to relate these to gradients. Students will complete practice questions | them and to find gradients of tangents | scatter graphs and statistical analysis. | also some nice probability applications that
can form the basis of discussions and short | | | | | Ž, | The How! | mark scriemes. | topics and link them to the previous topics. | and also past exam questions. | and develop their own questions on these | Students will also be encouraged to create | and also past exam questions. | | with past exam questions, mark schemes and | trials in lessons. | | | | | ii d | | | | Students will also be encouraged to create
and develop their own questions on these | topics and link them to the previous topics.
Students will also need to start critiquing the | and develop their own questions on these
topics and link them to the previous topics. | Students will also be encouraged to create
and develop their own questions on these | | examiners reports.
Students should also continue to develop and | Students will still need to work through
I problems on these topics. They should still | | | | | Disc | | | | topics and link them to the previous topics. | questions that other students have made. | | topics and link them to the previous topics. | | share their own creations. | be developing and sharing ideas | 1. Builds from KS4: | 1. Builds from KS4: | 1. Builds from KS4: | 1. Builds from KS4: | 1. Builds from KS4: | | | | | | | Indices Expanding and Factorising | Simultaneous Equations Inequalities | y=mx+c | Expanding and factorising
Sequences | Cosine Rule
Sine Rule | Quadratic graphs | Areas on graphs Further develops in Y13: | Sampling
Types of Data | Cumulative Frequency
Box Plots | | | | | | | Surds | Further develops in Y13: | 2. Builds from KS4: | | Area of triangle (sine rule) | Further develops in Y13: | Further integration | | Histograms | | | | | | | Further develops in Y13:
Algebraic Methods | Differentiation and Integration | Circle theorems Further develops in Y13: | Further develops in Y13:
Binomial expansion, including partial fractions | Graphs of sine, cosine and tangent
Further develops in Y13: | Differentiating sin and cos
Differentiating exponentials and logarithms | 2. Builds from KS4: | Builds from KS4: Averages and Range | 2. Builds from KS4: | | | | | 3 | io i | Proof
Binomial Expansion | Builds from KS4: Cubic and Reciprocal Graphs | Radians | | Trigonometric functions Trigonometry and modelling | Chain rule
Product rule | Solving equations | Further develops in Y13:
Normal distribution | Scatter Graphs Further develops in Y13: | | | | | (Flov | tens | 2. Builds from KS4: | Sketching Graphs Furthers develops in Y13: | Builds from KS4: Algebraic fractions | | 2. Builds from KS4: | Quotient rule
Parametric differentiation | | | Measuring correlation Hypothesis testing for correlation | | | | | cing | 8 | Solving quadratics | Functions and Graphs | Proof | | Trigonometry in right-angled triangles | Implicit differentiation | | | | | | | | dne | ieval | Quadratic graphs Further develops in Y13: | | Further develops in Y13:
Algebraic methods | | Further develops in Y13:
Trigonometric functions | Using second derivatives
Rates of change | | | Builds from KS4: Calculating Probability | | | | | Š | Retr | Functions and graphs | | | | Trigonometry and modelling | | | | Venn Diagrams
Mutually Exclusive Events | | | | | | | | | | | 3. Builds from KS4: | | | | Tree Diagrams | | | | | | | | | | | Column vectors
Further develops in Y13: | | | | Further develops in Y13:
Conditional probability | | | | | | | | | | | Vectors in 3D | | | | 4. Further develops in Y13: | | | | | | | Regular End of unit assessments | End of unit assessments using the Pearson | AP1 Assessment - Whole School Data | End of unit and reflection on the AP1 | End of unit assessments using the Pearson | End of unit assessments using the Pearson | AP2 Assessment - Whole School Data | End of unit and reflection on the AP2 | Normal distribution End of unit assessments using the Pearson | | | | | imative
issment | | | Active learn resources | Collection | assessment. Past exam questions to fill | active learn resources | active learn resources | Collection | assessment. Past exam questions to fill | active learn resources | | | | | mma | | | | | knowledge gaps for the AP3 should be used
for AfL in the lessons | | | Review Exercise 3 | knowledge gaps for the AP3 should be used
for AfL in the lessons | | | | | | Sui | | | | | | | | | | | | | | | e e | | | | | | | | | | | | | | Personal
Empowerment | Virtue | | Friendliness & Civility | Justice & Truthfulness | Courage | Generosity | Gratitude | Good Speech | Good Temper & Humour | Self-I | Mastery | | | | | | The opportunity to | Students will demonstrate friendlinger d | Students will look at how graphs and co-lo- | Students will need to be brown in terms of | Students should be generally with their time | Students should be taught about the ward of | f This is one of the tonics that students find | Tackling integration for the first time. It will | Students will have come chilly for data | This is an opportunity for students to master | | | | | e e | reflect, think
deeply and | civility as they help each other to revise and | can be manipulated to hide the 'truth' | tackling new topics. They should be | in order to support each other both | early mathematicians and scientrists and | This is one of the topics that students find tircky. They should be encouraged to | be important for students to demonstrate | collection from GCSE. This will be an | their understanding of the different ways in | | | | | to Virtu | critically about an
issue. | improve on their algebraic knowledge from
KS4. | | they are making in order to deepen their | academically and emotionally around the AP1
assessment period | the work that these pioneers have done to | demonstrate good speech and be open about how they are finding the topic and to share | tricky topic when first introduced and | opportunity for the students to focus on
mastery of this skill during work on statistics | | | | | | k to | | | | understanding and the understanind of others | | benefit us and humanity. | ideas on how to tackle problems. | students will need to remain open minded | | students self mastery of these concepts | | | | ш | Ę | | | | | | | | | | | | | | _ | | | | | | | | | | | l | | | | Preparation for
Work | Sk≡ | sı | Listening | Leadership | Problem-Solving | Creativity | Staying Positive | Speaking | Staying Positive | Almir | ng High | | | | | | s skil. | Students will need to listen carefully to | Students will lead in their own learning ~ | These topics naturally lend themselves to the | Students should be encouraged to create | When tackling some of the newer concentr | Students whould be encouraged to speak | Matching well with the virtue of good | Students will need to reflect carefully on the | Students will need to focus on revision for | | | | | = | rable | understand how their previous learning will | they build upon their previous KS4 learning to | skill of problem solving and their will be | their own questions based on given | students should stay positive in order to be | through problems and share solutions to the | temper, staying positive will be important | AP2 exam results and use these as the basis | the AP3 assessment which will be taking | | | | oar
✓ | to Skill | nsfe | be stretched and challenge in algebra.
Additionally, there is new content in | expand into this Y12 AS content | specific problem based questions in these topics for the students to try. These are | prarmeters and mark schemes. | resilient and complete longer problems | rest of the group in order to build their confidence in the skill of speaking. | when tackling the more complex problems
and past exam questions | to aim high in order to meet/exceed their | place during the next few weeks. Past exam
papers and model soultions should be made | | | | re d | Link t | 55 | quadratics that will be challenging if students do not listen. | | denoted P in the text books | | | | | target grades for the next round of assessments. | available for students to help develop their exam skills. | | | | _ | | | | | | | | | | | | | | | Preparation for
Citizenship | C & | s, | Social | Social
Moral | | | | | | | | | | | | SMSC &
British
Values | anss). | Rule of Law | Democracy | | | | | | | | | | | | S. | rent | Students will use their social skills to work | Students will use their social skills as they | | | | | | | | | | | | Value | on ct | together in groups and pairs to develop their
understanding. | complete paired and group activities. Students will look at the moral repercussions | | | | | | | | | | | | tish / | ions | _ | of manipulating graphs and data. | | | | | | | | | | | | S Bri | ujdo. | | Students will demonstrate democracy as they | , | | | | | | | | | | | ASC & | Bujdi | order to move past the first module and | wortk together to debate, discuss and make decisions about the kind of equation solving | | | | | | | | | | | 1 - | to SA | evelc | A-Level course. | rules to use or graphs to draw | | | | | | | | | | | | ž | ٥ |